ROUND I: Arirthmetic

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. What is 10% of 0.01 divided by 5% of 0.001 ?
2. Find the answer when you multiply the medians of A and B and then subtract the product of the mode of C and the mean of D for these data sets.

5 4 97 6 95 99 3 98 96 \mathbf{A} 77 8 75 9 76 10 79 7 74	72 74 75 76 72 74 77 74 73
C10 4 5 8 6 5 1 3 3	
\mathbf{D}	

3. How many integers between 1 and 100,000 are divisible by all of $2,3,4,5,6,7$, and 11 ?

ANSWERS

(! pt) 1 .
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Algonquin, Quaboag, Southbridge

ROUND II: Algebra 1 - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $\frac{-3 w-11 c}{c+15 w}=-2$, find the value of $\frac{w}{c}$.
2. One rajah says to another," If you will give me one camel, then we will have an equal number of camels". The other replies, "No, if you give me one camel, then I will have double the number you have". How many does each have?
3. You cut a 3×3 square from a calendar page. If the sum of the 9 dates is divisible by 13 , what is the number in the lower left corner of the square?

ANSWERS
(1 pt) 1. $\frac{w}{c}=$
\qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Bromfield, Burncoat, Quaboag

ROUND III: Set theory

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Between 1933 and 1995 there were 11 presidents of the United States and 14 vice-presidents. If 9 of the vice-presidents were never president, how many of the presidents were never vice-president?
2. Let $A=\{2,4,6,8\}, B=\{1,3,4,5,6,7\}$, and $C=\{4,5,8,9,10\}$ and let the universe be $A \cup B \cup C$. List the elements in $[(A \cap B) \cup(B \cap C)]^{\prime} \cap(A \cup B)^{\prime}$. S ' is the complement of set S
3. 100 students attended at least one of 3 concerrts, Pep Band, Country Sizzle, and Blue Mood. 48 were at Pep Band, 36 at Country Sizzle, and 60 at Blue Mood. 12 heard Pep Band and Country Sizzle, 20 heard Country Sizzle and Blue Mood, and 16 heard Pep Band and Blue Mood. How many attended all 3 concerts?

ANSWERS

$(1 \mathrm{pt}) \quad 1$. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Burncoat, Shepherd Hill

ROUND IV: Measurement

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM OR AS SPECIFIED IN THE PROBLEM

1. The scale on a map states that 1 cm represents 6 miles. How many square miles would be represented by an area on the map of 240 square cm ?
2. T and R are the midpoints of two adjacent edges of the cube. If the volune of the cube is 1008 , what is the volume of pyramid PRST?

3. In the diagram there are quarter circles centered at the vertices of a square with sides of length 2. There is a smaller square with sides parallel to the other square and vertices on the arcs. Find the area of the small square in a form involving a simplified radical or to the nearest . 001 .

ANSWERS
$(1 \mathrm{pt}) \quad 1$. sq. $m i$
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Algonquin, Burncoat, Westborough

ROUND V: Polynomial equations

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Assume that a polynomial function $p(x)$ of degree three has zeros $-1,5$, and 7 . State the zeros of $2 p(x-3)$.
2. One root of the cubic equation $3 x^{3}-22 x^{2}+45 x-28=0$ is $x=3-\sqrt{2}$. What is the rational root of this equation?
3. What rational number k will make the factor $\mathrm{x}-\mathrm{k}$ divide into $x^{3}-3 x^{2}+5 x-12$ so that the remainder is k ?

ANSWERS
$(1 \mathrm{pt}) \quad 1$. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Burncoat, Quaboag, Westborough

TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THE SEPARATE TEAM ANSWER SHEET

1. 123-45-67+89 The expression to the left equals 100 and uses all the digits 1 through 9 exactly once in increasing order with only + or - . Write a similar expression using all the digits 1 through 9 exactly once in decreasing order with only + or - to equal 100 .
2. Jane's house was built 10 years before Bob's house and 20 years after Ann's house. Twenty years ago the age of Ann's house was the same as the combined ages of Jane's and Bob's. What is the present age of Ann's house?
3. Consider the set $\{\mathrm{T}, \mathrm{O}, \mathrm{D}, \mathrm{A}, \mathrm{Y}\}$. How many subsets can be made of two or more letters if at least one letter must be a vowel?
4. What are the lengths of the bases of an isosceles trapezoid in which the two equal length sides are 5 , the perimeter is 34 , and the area is 48 ?
5. For what value(s) of the coefficient a do these equations have a real, common solution? $x^{2}-a x+1=0$ and $x^{2}-x+a=0$
6. Simplify $\frac{\sqrt{\sqrt{\sqrt{x^{16}}}}}{x}$.
7. Arrange the numbers $2^{333}, 3^{210}$, and 5^{144} in increasing order.
8. If an angle is the union of two rays having the same endpoint, how many angles are formed by six noncollinear rays that have the same endpoint?
9. Continuing the pattern in the diagram to the right, how many right triangles can be made before overlapping begins? Include the four shown.

Algonquin, Assabet Valley, Burncoat, Shepherd Hill, Shrewsbury, Southbridge, Tantasqua

ROUND I

1. $\frac{(.10)(.01)}{(.05)(.001)}=\frac{.001}{.00005}=20$
2. $(95)(74)-(74)(5)=6660$
$3100,000 \div L C M$ of $2,3,4,5,6,7,11$

$$
=100,000-4620=21645
$$

$\therefore 21$ integers
ROUND II

$$
\begin{aligned}
& 1-3 w-11 c=-2 c-30 w \\
& 27 w=9 c \Rightarrow \frac{w}{c}=\frac{1}{3}
\end{aligned}
$$

2 one x, other: y

$$
\left\{\begin{array}{c}
x+1=y-1 \\
2(x-1)=y+1
\end{array}\right\} \Rightarrow x=5, y=7
$$

or trial and error with integers
3.

$$
\begin{array}{lll}
n-8 & n-7 & n-6 \\
n-1 & n & n+1 \\
n+6 & n+7 & n+8
\end{array}
$$

For $\sin , 9 n$, to be divisible by 13 , $n=13$ and $n+6=19$

Round III
1.

$$
\begin{aligned}
& 2[(A \cap B) \cup(B \cap C)]=\{4,6\} \cup\{4,5\}=\{4,5,6\} \\
& {[} \\
& (A \cup B)=\{1,2,3,4,5,6,7,8\} \\
& (\quad)^{\prime}=\{9,10\} \longrightarrow \text { Ans }\{9,10\}
\end{aligned}
$$

3.

$$
\begin{gathered}
\text { sum }=100 \\
96+x=100 \\
x=4
\end{gathered}
$$

ROUND IV

$$
\begin{aligned}
1 \mathrm{~cm}^{2} & =36 \mathrm{~ms}^{2} \\
240 \mathrm{~cm}^{2} & =240 \cdot 36=8640 \mathrm{~m}^{2}
\end{aligned}
$$

2. If $e=$ cube edge, framed vol $=\frac{1}{3} B h=\frac{1}{3}\left(\frac{1}{2} \frac{e}{2} \frac{e}{2}\right) e$

$$
=\frac{e^{3}}{24}=\frac{16 c 8}{24}=42
$$

3

$$
\begin{aligned}
x & =2\left(\frac{\sqrt{2}-1}{\sqrt{2}}\right) \\
& =2-\sqrt{2} \\
x & =6-4 \sqrt{2} \\
& =0.343
\end{aligned}
$$

ROUND I
1 Add 3 to the given zeros to get 2,8 , and 10
2. $3+\sqrt{2}$ is also a root

Let $r=3$ red root .

$$
\begin{aligned}
&(3+\sqrt{2})(3-\sqrt{2}) r=\frac{28}{3} \\
& 7 r=\frac{2 \pi}{3} \Rightarrow r=\frac{4}{3}
\end{aligned}
$$

3 synthetic subst

$$
\begin{array}{lcc}
1 & -3 & 5 \\
k & k^{2}-3 k & -12 \\
\hline 1 & k-3 & k^{2}-3 k+5 \\
\underbrace{3}-3 k^{2}+5 k \\
k^{3}-3 k^{2}+5 k-12
\end{array} \quad k \begin{aligned}
& k^{3}-3 k^{2}+4 k-12=0 \\
& k^{2}(k-3)+4(k-3)=0 \\
& \left(k^{2}+4\right)(k-3)=0 \Rightarrow k=3
\end{aligned}
$$

TEAM ROUND

1. My trial and error found $98-76+54+3+21=100$.
Apparently ot her answers are possible
2

	Now	20 yrs ago
Jane's	$A-20$	$A-40$
Bobs	$A-30$	$A-50$
Ann'r	A	$A-20$
$A-20=2 A-90 \Rightarrow A=70$		

3.

CT	OTD	OTDA	
$C D$	OTA	OTDY	
OA	OTY	ODAY	
CH	ODA	OTAY	\ddots
AT	ODY	ATDY	
AD	OAY		
AV	ATO	OTDAY	
	ATV		
	ADV		

4.

perm $x+y+10=34 \Rightarrow x+y=24$
area. $\frac{1}{2} h(x+y)=48 \Rightarrow 12 h=48$ and $h=4$
rt C, Pythag then gets $z=3$
$x+y=x+6+x=24 \Rightarrow x=9, y=15$
5
Set $\frac{a \pm \sqrt{a^{2}-4}}{2}=\frac{1 \pm \sqrt{1-4 a}}{2}$.
Note $a \geq 2$ or $a \leq-2$ and $a \leq \frac{1}{4}$ from
with graphing calculator, graph these with X for a. One solution seems likely: $x=a=2$ check it

5 cont. $\quad x^{2}+2 x+1=0 \quad x^{2}-x-2=0$ $x=-1$ only $\underset{\leftrightarrow}{ }(x-2)(x+1)=0$
$x=-1$
$6 \frac{\left(\left(\left(x^{16}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}}{x}=\frac{x^{2}}{x}=x$
7. If your calculator will work with powers of 10 form with expment ≥ 100, this is to 0 easy ($M_{y} T 1.81$ did not) Ore way Use $\log a^{x}=x \log a$ and compare these expressions
Another way
$2^{332}=8,749 \times 10^{99}$ so $2^{333} \approx 17 \times 10^{94}$ $3^{209}=5228 \times 10^{94}$ so $3^{210}=15 \times 10^{94}$ $5^{143}=8.968 \times 10^{94}$ so $5^{144} \approx 45 \times 10^{94}$
8. $\quad 6 C_{2}=15$

9. Consider angles at common vertex $j^{5 t}=\cos ^{-1} \frac{2}{3}=48.19^{\circ} \quad$ sum $2^{\text {nd }}=\cos ^{-1} \frac{3}{4}=41.41^{\circ} \quad 89.60^{\circ}$. $\begin{array}{rll}3 \mathrm{rd}=\cos ^{-1} \frac{4}{5}=36.87^{\circ} & 126.47^{\circ} \\ & 33.56^{\circ} & 160.03^{\circ}\end{array}$ $\therefore \quad 3100^{\circ} \quad 19103$. $28.96^{\circ} \quad 219.99^{\circ}$
$2727^{\circ} \quad 24726^{\circ}$
$25.84^{\circ} \quad 27310^{\circ}$ $24.62^{\circ} \quad 297.72^{\circ}$
$23.56^{\circ} \quad 32128^{\circ}$
$11^{\text {th }}=\cos ^{-1} \frac{12}{13}=22.62^{\circ} \quad 348.90^{\circ}$
12th overlaps $21.79^{\circ} \quad 365.69^{\circ}$

